PHENIX p+p and Spin Results

Wei Xie

(UC, Riverside)

for **PHENIX** collaboration

Outline

• Physics Motivation in p+p collisions

Results and analysis status from run2002

Plan for near future

p+p Physics Motivation at PHENIX (I) Baseline for interpreting Au+Au result

p+p Physics Motivation at PHENIX (II)Proton Spin Structure

Longitudinal-spin asymmetry:

- * gluon polarization measurement:
 - direct photon
 - hadron production
 - open heavy flavor with e, u, eu
 - $-J/\psi$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$$

- * anti-quark polarization measurement:
 - parity violating $W^{+/-}$ flavor decomposition of quark sea

Transverse-spin asymmetry

- - A_N : π^0 , charged hadron
- -Transversity

PHENIX Central Arm and Muon Arm Detector

- Good particle ID
- Good momentum resolution
- High granularity
- High rate capibility
- measure electron, charged hadrons, photon, π^0 , and muons

PHENIX RUN2002 Luminorsity

PHENIX recorded 150nb⁻¹ online.

After various cuts,

 π^0 analysis: $40nb^{-1}$

Charged hadron analysis: 40nb⁻¹

 $J/\psi -> e^+e^- : 48nb^{-1}$

 $J/\psi -> \mu^{+}\mu^{-}$: 81nb⁻¹

High raw rate requires lvl1 triggers

Central Arm EMCal/RICH LVL1 trigger

Trigger for photons, electrons, charged hadrons, quarkonium.

Successfully run in 2002 used in J/ψ ->e⁺e⁻, π^0 , charged hadrons, and single electron analysis.

Muon Arm LVL1 trigger

- Coincidence of fired MuID planes of each "quadrant"
- used for $J/\psi->\mu^+\mu^-$ analysis

p+p π^0 inclusive cross section

- Minimum-bias trigger covers up to 5GeV, ERT trigger extent to 12GeV
- NLO pQCD calculation with scale dependence is consistent with data down to $P_t = 1.5 \text{GeV}$. A solid ground for the interpretation of gluon polarization measurement.
- Compare with Au+Au result shows p_t dependence of suppression.

Charge Hadron Analysis in RUN2002

Minimum-bias trigger covers up to 5GeV. EMCal/RICH trigger extent to 10GeV

Analysis to get cross section is on-going..

π^0 and charged hadron Single Transverse Spin in RUN2002

$$A_{N} = \frac{1}{P} \frac{N_{left} - N_{right}}{N_{left} + N_{right}}$$

Polarization = 15%,

First measurements in midrapidity at $\sqrt{s} = 200 GeV$

Much smaller statistical error than E704 at $\sqrt{s} = 20 GeV$

J/ψ to lepton pairs in RUN2002 (I). signal

Mass(ee)

• Mass($\mu\mu$)

J/ψ to lepton pairs in RUN2002

(II) J/ψrapidity distribution and total cross section

Br $(J/\psi \rightarrow l^+l^-)\sigma$ (p+p \rightarrow J/ ψ X) = 226 ± 36 (stat.) ± 79 (sys.) nb σ (p+p \rightarrow J/ ψ X) = 3.8 ± 0.6 (stat.) ± 1.3 (sys.) µb

- Our result agrees with the color evaporation model prediction at √s=200 GeV
- Result referenced for Au+Au

Single lepton from Heavy Flavor Decay

We can measure
open heavy flavor
through single
leptons and leptons
pairs.

K DO DO

PYTHIA calculation will be replaced by our pp measurement

Gluon Polarization Measurement for Near Future Runs

- 2002-2003 run (run-3)
 - $\sim 3pb^{-1}$ at $\sqrt{s} = 200GeV$
 - *−* >=40% polarization
 - $-A_{LL}$ of π^0 and charged hadrons
- 2003-2004 run (run-4)
 - $\sim 30pb^{-1}$ at $\sqrt{s} = 200GeV$
 - *−* >=50% polarization
 - $-A_{LL}$ of heavy flavor
 - J/psi
 - single-electron
 - start e-μ coincidence
 - start A_{LL} of direct photon

Expectation for A_{LL} of π^0 and charged hadrons

- First measurement of ΔG via A_{LL}
- Distinguish different species in RUN4 to have good control over gluon polarization measurement

Expectation of Heavy Flavor A_{LL} measurement

$$A_{\rm LL} \propto \frac{\Delta G(x_{_A})}{G(x_{_A})} \otimes \frac{\Delta G(x_{_B})}{G(x_{_B})} \otimes \boldsymbol{\hat{a}}_{\rm LL}^{gg \to Q\bar{Q}}$$

Single electron channel

Expectation for A_{LL} on Prompt photon

$$A_{LL} = a_{LL}(qg \to q\gamma) \frac{\Delta g(x_1)}{g(x_1)} A_1^p(x_2)$$

90% from gluon compton scattering, 10% from quark-antiquark annihilation.

Summary

- PHENIX had a successful RUN in 2002.
 - -- Cross section of π^0 and J/ψ to lepton pairs has been measured and used as reference for our Au+Au results.
 - -- Comparison with theoretical predictions are done or underway.
 - -- Cross section for charged hadrons and A_N asymmetry are being analyzed.
- PHENIX has detailed plan to measure proton spin structure in future runs and expecting high statistics data in pp collisions to form solid ground to interpret results from Au+Au collisions.

Back-up slide

Comparison with UA1 Fitting

- UA1 has inclusive hadron measurement up to Pt = 6GeV/c. Normalize the cross section using ISR ratio of haron/pion = 1.6 and extrapolated to higher p_T.
- The extrapolation is below our data at high p_T

Normalization systematic error 30% is not included here.

EMCal/RICH trigger Performance

EMCal/Rich Trigger rejection: Different Granularities

Neutron A_N Measurement at IP12

Observe large asymmetry

Used to monitor and calibrator spin rotater at PHENIX

